Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Ore-type conditions implying 2-factors consisting of short cycles

Alexandr V. Kostochka ${ }^{\mathrm{a}, \mathrm{b}, *}$, Gexin Yu^{c}
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\text {c }}$ Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

A R T I C L E I N F O

Article history:

Received 22 December 2006
Accepted 2 June 2008
Available online 11 July 2008
Dedicated to Anthony Hilton

Keywords:

Packing
Degree conditions

Abstract

For every graph G, let $\sigma_{2}(G)=\min \{d(x)+d(y): x y \notin E(G)\}$. The main result of the paper says that every n-vertex graph G with $\sigma_{2}(G) \geq \frac{4 n}{3}-1$ contains each spanning subgraph H all whose components are isomorphic to graphs in $\left\{K_{1}, K_{2}, C_{3}, K_{4}^{-}, C_{5}^{+}\right\}$. This generalizes the earlier results of Justesen, Enomoto, and Wang, and is a step towards an Ore-type analogue of the Bollobás-Eldridge-Catlin Conjecture.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Two n-vertex graphs G_{1} and G_{2} are said to pack if there exist injective mappings of their vertex sets onto [n] such that the images of the edge sets do not intersect. In a similar way, one can define the packing of more than two graphs.

The study of extremal problems on packings of graphs was started in the 1970s by Bollobás and Eldridge [3], Sauer and Spencer [18], and Catlin [5].

Sauer and Spencer [18] proved that two n-vertex graphs pack if the product of their maximum degrees is less than $n / 2$. Kaul and Kostochka [14] characterized the pairs of n-vertex graphs with the product of maximum degrees exactly $n / 2$ that do not pack.

The following BEC-conjecture (one of the main conjectures in the area) was posed in 1978 by Bollobás and Eldridge [3], and independently by Catlin [6].

Conjecture 1. Let G_{1} and G_{2} be n-vertex graphs with maximum degrees Δ_{1} and Δ_{2}, respectively. If $\left(\Delta_{1}+1\right)\left(\Delta_{2}+1\right) \leq n+1$, then G_{1} and G_{2} pack.

By definition, graphs G_{1} and G_{2} pack if and only if G_{1} contains the complement \bar{G}_{2} of G_{2}. In the containment language, the BEC-conjecture states that every n-vertex graph G with minimum degree δ contains each n-vertex graph H such that $(n-\delta)(\Delta(H)+1) \leq n+1$.

This conjecture is proved to be true only for some limited classes of graphs, see [1,2,8,4,15]. In particular, Aigner and Brandt [1], and independently Alon and Fisher [2] (for n sufficiently large), proved the special case $\Delta(H) \leq 2$:

Theorem 1. If G is an n-vertex graph with $\delta(G) \geq(2 n-1) / 3$, then G contains each n-vertex graph H with $\Delta(H) \leq 2$.

[^0]Theorem 1 generalizes an earlier result by Corrádi and Hajnal [7], which says that a $3 k$-vertex graph G with minimum degree at least $2 k$ contains k disjoint triangles. Another important generalization of the Corrádi-Hajnal result is the Hajnal-Szemerédi Theorem [12] states that each n-vertex graph G with $\delta(G) \geq(1-1 / k) n$ contains the graph $H(n, k)$ whose every component is K_{k}, given that k divides n. This theorem is the partial case of the BEC-conjecture for G_{2} being the disjoint union of complete graphs of the same size.

The above-mentioned results have the spirit of Dirac's Theorem [9] (which says that every n-vertex graph with minimum degree at least $n / 2$ contains a hamiltonian cycle) in the sense that these results guarantee the existence of some subgraph if the minimum degree of the graph is large enough. Ore [17] gave a different sufficient condition for hamiltonicity: he proved that every n-vertex graph G with

$$
\sigma_{2}(G)=\min _{x y \notin E(G)}\{\operatorname{deg}(x)+\operatorname{deg}(y)\} \geq n
$$

contains a hamiltonian cycle. Justesen [13] proved an Ore-type version of the Corrádi-Hajnal Theorem by showing that every n-vertex graph G with $\sigma_{2}(G) \geq 4 n / 3$ contains $\lfloor n / 3\rfloor$ disjoint triangles. Enomoto [10], and Wang [19] sharpened this result. In particular, they proved the following.

Theorem 2. For each positive integer k, every $3 k$-vertex graph G with $\sigma_{2}(G) \geq 4 k-1$ contains k disjoint triangles.
Our main result is the following.
Theorem 3. Each n-vertex graph G with

$$
\begin{equation*}
\sigma_{2}(G) \geq \frac{4 n}{3}-1 \tag{1}
\end{equation*}
$$

contains all spanning subgraphs whose components are isomorphic to graphs in $\mathscr{H}=\left\{K_{1}, K_{2}, C_{3}, K_{4}^{-}, C_{5}^{+}\right\}$.
Here C_{5}^{+}denotes a cycle of length five with a chord. Note that K_{4}^{-}can also be considered as C_{4}^{+}, i.e. a cycle of length four with a chord.

Condition (1) cannot be weakened. For example, for each integer $k \geq 2$, let $G(k)$ denote the complement of the disjoint union $K_{k} \cup K_{k} \cup K_{k-2}$. Its number of vertices, $n(k)$, is $3 k-2$ and $\sigma_{2}(G(k))=4 k-4=\frac{4 n(k)-1}{3}-1$ which is just $1 / 3$ less than the lower bound in (1). However, $G(k)$ does not contain the graph $H(k)$ which is the disjoint union of $k-1$ triangles and a single vertex. It particular, Theorem 3 generalizes and extends the above-mentioned results of Justesen, Enomoto and Wang.

Theorem 3 is also a step towards an Ore-type analogue of the BEC-conjecture. We state and discuss this analogue in the next section in terms of graph packing. In Section 3 we present some technical results on the existence of some subgraphs in dense graphs on at most 12 vertices. The proofs in this section can be omitted at first reading. In Section 4 we prove the following weakening of Theorem 3.

Theorem 4. Each n-vertex graph G with

$$
\sigma_{2}(G) \geq \frac{4 n}{3}-1
$$

contains all spanning subgraphs whose components are isomorphic to graphs in $\mathscr{H}_{1}=\left\{K_{1}, K_{2}, C_{3}, K_{4}^{-}\right\}$.
In Section 5 we prove two auxiliary statements, and in the final section we prove the main result. The idea of the proofs of most results below is as follows. We have a graph G satisfying (1) and a graph H that we want to show to be embeddable into G. We also know that G contains another graph H^{\prime} that is obtained from H by replacing one (small) component, say F, with a bit 'simpler' component F^{\prime}. Using (1), we show that there is some embedding $f: V\left(H^{\prime}\right) \rightarrow V(G)$ of H^{\prime} into G such that there are 'many' edges in G between $f\left(V\left(F^{\prime}\right)\right.$) and the image of some other component $F^{\prime \prime}$ of H^{\prime}. Then we prove that under these conditions $G\left[f\left(V\left(F^{\prime}\right)\right) \cup f\left(V\left(F^{\prime \prime}\right)\right)\right]$ contains vertex-disjoint copies of F and $F^{\prime \prime}$.

The notation used is mostly from [20]. Let G be a graph. For $W, U \subseteq V(G), e(W, U)$ is the number of edges connecting W with U. For $W \subseteq V(G)$ and $x \in V(G), N_{W}(x)$ is the set of neighbors of x in W and $d_{W}(x)=\left|N_{W}(x)\right|$. Also, $G\left[x_{1}, \ldots, x_{k}\right]$ (respectively, $G\left[W-x_{1}-\cdots-x_{k}+y_{1}+\cdots+y_{l}\right]$) denotes the subgraph of G induced by the set $\left\{x_{1}, \ldots, x_{k}\right\}$ (respectively, by the set $\left.W \cup\left\{y_{1}, \ldots, y_{k}\right\} \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right)$.

2. A graph packing conjecture

As mentioned in the introduction, a graph G contains a graph H if and only if H packs with the complement \bar{G} of G. Ore-type conditions look more natural for packing graphs than for embedding graphs. Indeed, let $\theta(G)=\max _{x y \in E(G)}\{\operatorname{deg}(x)+\operatorname{deg}(y)\}$. In terms of θ, Ore's Theorem claims that every n-vertex graph G with $\theta(G) \leq n-2$ packs with the cycle C_{n} of length n. Note that $\theta(G)=\Delta(L(G))+2$, where $L(G)$ is the line graph of G. By definition, for every graph G,

$$
\begin{equation*}
\Delta(G)+\delta(G) \leq \theta(G) \leq 2 \Delta(G) \tag{2}
\end{equation*}
$$

In [16] Dirac-type packing results of Sauer and Spencer [18] and Kaul and Kostochka [14] mentioned above were extended to the following Ore-type result.

Theorem 5. If two n-vertex graphs G_{1} and G_{2} satisfy $\theta\left(G_{1}\right) \Delta\left(G_{2}\right) \leq n$, then G_{1} and G_{2} pack, with the following exceptions:
(I) G_{1} is a perfect matching and G_{2} is either $K_{n / 2, n / 2}$ with $n / 2$ odd or contains $K_{n / 2+1}$;
(II) G_{2} is a perfect matching and G_{1} is either $K_{r, n-r}$ with r odd or contains $K_{n / 2+1}$.

In [15] we posed the following conjecture which by (2) extends the BEC-Conjecture.
Conjecture 2. If G_{1} and G_{2} are n-vertex graphs and $\left(0.5 \theta\left(G_{1}\right)+1\right)\left(\Delta\left(G_{2}\right)+1\right) \leq n+1$, then G_{1} and G_{2} pack.
Theorem 3 implies the partial case of Conjecture 2 when every component of G_{2} is a cycle of length at most five or a short path.

Remark. One of the referees suggested to consider an Ore-type analogue of the result by Fan and Kierstead [11] that every n-vertex graph G with $\delta(G) \geq(2 n-1) / 3$ contains the square of a hamiltonian path. That would be a challenging problem.

3. On small dense graphs with a $\boldsymbol{C}_{\mathbf{4}}$-subgraph

In this section we present some technical facts on the existence of K_{4}^{-}-subgraphs in small (on at most 12 vertices) dense graphs. The reader can skip it at first reading.

Lemma 1. Let V_{1} and V_{2} be disjoint vertex subsets of a graph F such that $F_{1}=F\left(V_{1}\right)=K_{3}, F_{2}=F\left(V_{2}\right)$ is the 4-cycle $y_{1} y_{2} y_{3} y_{4}$ and $e\left(V_{1}, V_{2}\right) \geq 9$. If each vertex in V_{2} is adjacent to some vertex in F_{1}, then $V_{1} \cup V_{2}$ can be partitioned into two sets V_{1}^{\prime} and V_{2}^{\prime} such that $F\left(V_{1}^{\prime}\right)$ is K_{3} and $F\left(V_{2}^{\prime}\right)$ contains K_{4}^{-}.
Proof. Let $V_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$. First suppose that some x_{i} is adjacent to every vertex in V_{2}. Some vertex y_{j} is adjacent to at least $\lceil 9 / 4\rceil=3$ vertices in V_{1}. Then $F\left(V_{1}-x_{i}+y_{j}\right)=K_{3}$ and $F\left(V_{2}-y_{j}+x_{i}\right)=K_{4}^{-}$.

The only other possibility is that each vertex in V_{1} has exactly 3 neighbors in V_{2}. Suppose that $N_{V_{2}}\left(x_{1}\right)=V_{2}-y_{4}$. If both x_{2} and x_{3} are neighbors of y_{4}, then we let $V_{1}^{\prime}=V_{1}-x_{1}+y_{4}$ and $V_{2}^{\prime}=V_{2}-y_{4}+x_{1}$. So, we can assume that $N_{V_{2}}\left(x_{2}\right)=V_{2}-y_{4}$. Then under conditions of the lemma, $x_{3} y_{4} \in E(F)$. Vertex x_{3} must also be adjacent to some $y \in\left\{y_{1}, y_{3}\right\}$, say to y_{1}. Then we let $V_{1}^{\prime}=\left\{x_{3}, y_{1}, y_{4}\right\}$ and $V_{2}^{\prime}=\left\{x_{1}, x_{2}, y_{2}, y_{3}\right\}$.

Lemma 2. Let V_{1} and V_{2} be disjoint vertex subsets of a graph F such that
(a) $V_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and $F_{1}=F\left(V_{1}\right)=K_{4}$;
(b) $F_{2}=F\left(V_{2}\right)$ is the 4-cycle $y_{1} y_{2} y_{3} y_{4}$;
(c) $\left|E_{F}\left(V_{1}, V_{2}\right)\right| \geq 11$.

If $F\left(V_{1} \cup V_{2}\right)$ does not contain two vertex-disjoint copies of K_{4}^{-}, then there are $x_{4} \in V_{1}$ and $y_{4} \in V_{2}$ such that
(i) $N_{F_{2}-y_{4}}\left(x_{1}\right)=N_{F_{2}-y_{4}}\left(x_{2}\right)=N_{F_{2}-y_{4}}\left(x_{3}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$;
(ii) y_{4} has at most one neighbor in V_{1} and $\left|E_{F}\left(V_{1}, V_{2}\right)\right|=11$.

Proof. Assume that V_{1} and V_{2} satisfy conditions (a)-(c), but $F\left(V_{1} \cup V_{2}\right)$ does not contain two vertex-disjoint copies of K_{4}^{-}. First we prove that

$$
\begin{equation*}
d_{F_{2}}\left(x_{i}\right) \leq 3 \text { for each } i \tag{3}
\end{equation*}
$$

Indeed, if $d_{F_{2}}\left(x_{i}\right)=4$, then we can choose some $y \in V_{2}$ with $d_{F_{1}}(y) \geq 3$ and let $F_{1}^{\prime}=F\left(V_{1}-x_{i}+y\right)$ and $F_{2}^{\prime}=F\left(V_{2}+x_{i}-y\right)$.
Assume that y_{4} has the fewest neighbors in V_{1}.
CASE 1: $d_{V_{1}}\left(y_{4}\right)=0$. By (c), at least 3 vertices in V_{1} have three neighbors in V_{2}, each. Thus in this case both (i) and (ii) hold.

CASE 2: $d_{V_{1}}\left(y_{4}\right)=1$. Suppose $x_{4} y_{4} \in E(F)$. By (c), every $y \in V_{2}-y_{4}$ has $d_{V_{1}}(y) \geq 2$. Hence if $d_{V_{2}}\left(x_{4}\right)=3$, then we get two vertex-disjoint copies of K_{4}^{-}by switching x_{4} with its non-neighbor $y \in V_{2}$. If $d_{V_{2}}\left(x_{4}\right) \leq 2$, by (c), each of x_{1}, x_{2}, x_{3} has exactly 3 neighbors in V_{2}, i.e. (i) holds. Also there must be equality in (c), so (ii) also holds.

CASE 3: $d_{V_{1}}\left(y_{4}\right) \geq 2$. By (c) and (3), some $x \in V_{1}$ has exactly 3 neighbors in V_{2}. Then switching x with its non-neighbor y in V_{2}, we obtain two vertex-disjoint copies of K_{4}^{-}, a contradiction. This finishes the proof.

Lemma 3. Let V_{1} and V_{2} be disjoint vertex subsets of a graph F such that
(a) $V_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and $F_{1}=F\left(V_{1}\right)=K_{4}^{-}$with $x_{1} x_{4} \notin E(F)$;
(b) $F_{2}=F\left(V_{2}\right)$ is the 4-cycle $y_{1} y_{2} y_{3} y_{4}$;
(c) $\left|E_{F}\left(V_{1}, V_{2}\right)\right| \geq 11$.

If $F\left(V_{1} \cup V_{2}\right)$ does not contain two vertex-disjoint copies of K_{4}^{-}, then either $F\left(V_{1} \cup V_{2}\right)$ contains a copy of K_{4} and disjoint from it copy of C_{4}, or there are $x \in\left\{x_{2}, x_{3}\right\}$ and $y_{4} \in V_{2}$ such that
(i) $N_{F_{2}-y_{4}}\left(x^{\prime}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$ for each $x^{\prime} \in V_{1}-x$;
(ii) y_{4} and y_{2} have no common neighbors in V_{1}.

Fig. 1.

Proof. Assume that y_{4} has the fewest neighbors in V_{1}.
CASE 1: $d_{V_{1}}\left(y_{4}\right)=0$ (see Fig. 1). By (c), at least 3 vertices in V_{1} have three neighbors in V_{2}, each. So, if (i) does not hold, then we may assume that x_{4} has exactly two neighbors in $V_{2}-y_{4}$, and every other $x \in V_{1}$ is adjacent to all y_{1}, y_{2}, and y_{3}. If $x_{4} y_{2} \in E(F)$, then switching y_{2} with x_{1} we obtain a copy of K_{4} and a disjoint from it 4-cycle. Otherwise, $x_{4} y_{1}, x_{4} y_{3} \in E(F)$ and we get a copy of K_{4} and a disjoint from it 4 -cycle by switching y_{2} with x_{4}.

CASE 2: $d_{V_{1}}\left(y_{4}\right)=1$. Suppose $x_{i} y_{4} \in E(F)$.
Subcase 2.1: $d_{V_{2}}\left(x_{i}\right) \geq 3$. Define y to be the non-neighbor of x_{i} in V_{2} if $d_{V_{2}}\left(x_{i}\right)=3$ or any $y \in V_{2}$ with 4 neighbors in V_{1} otherwise. Note that such y exists by (c) when $d_{V_{1}}\left(y_{4}\right)=1$. We try to switch x_{i} with y. We do not get two disjoint copies of K_{4}^{-}or a copy of K_{4} and a copy of C_{4} only if $d_{V_{2}}\left(x_{i}\right)=3, y$ has exactly two neighbors in V_{1} and $F_{1}-x_{i}$ is not a K_{3}. In particular, we may assume that $i=2$. Also from (c) we conclude that $d_{V_{1}}\left(y^{\prime}\right)=4$ for both $y^{\prime} \in V_{2}-y_{4}-y$. By the symmetry between y_{1} and y_{3}, we may assume that $y_{3} \in V_{2}-y_{4}-y$. By the symmetry between x_{1} and x_{4}, we may assume that $x_{1} y \in E(F)$. Then either of $F\left[y_{3}, y_{4}, x_{2}, x_{4}\right]$ and $F\left[y_{1}, y_{2}, x_{1}, x_{3}\right]$ contains K_{4}^{-}.

Subcase 2.2: $d_{V_{2}}\left(x_{i}\right) \leq 2$. By (c), $d_{V_{2}}\left(x_{i}\right)=2$ and each $x \in V_{1}-x_{i}$ is adjacent to y_{1}, y_{2}, and y_{3}. Thus (i) holds, unless $i \in\{1,4\}$. Suppose, $i=4$. Then we have $F\left[x_{1}, x_{2}, y_{1}, y_{2}\right]=K_{4}$ and the 4 -cycle ($x_{3}, y_{3}, y_{4}, x_{4}$). So, we only need to prove (ii) in the case $i \in\{2,3\}$. Suppose that $i=3$ and $x_{3} y_{2} \in E(F)$. Then $F\left[V_{1}-x_{1}+y_{2}\right]=K_{4}$ and $F\left[V_{2}-y_{2}+x_{1}\right]=C_{4}$. This proves (ii).

CASE 3: $d_{V_{1}}\left(y_{4}\right) \geq 2$.
Subcase 3.1: $d_{V_{2}}\left(x_{1}\right) \geq 3$. Switch x_{1} with its non-neighbor y in V_{2}, if $d_{V_{2}}\left(x_{1}\right)=3$, and with any $y \in V_{2}$, otherwise. In both cases we obtain two K_{4}^{-}.

By the symmetry between x_{1} and x_{4}, the remaining case is the following.
Subcase 3.2: $d_{V_{2}}\left(x_{1}\right) \leq 2$ and $d_{V_{2}}\left(x_{4}\right) \leq 2$. By (c), we can assume that $d_{V_{2}}\left(x_{2}\right)=4$. If $d_{V_{1}}(y)=4$ for some $y \in V_{2}$, then we switch x_{2} with y and get two K_{4}^{-}. Otherwise, we can assume that

$$
\begin{equation*}
d_{V_{1}}\left(y_{1}\right)=d_{V_{1}}\left(y_{2}\right)=d_{V_{1}}\left(y_{3}\right)=3 \tag{4}
\end{equation*}
$$

By the symmetry between x_{1} and x_{4}, we can assume that $x_{1} y_{3} \in E(F)$. Then $F\left[x_{1}, x_{2}, y_{3}, y_{4}\right]$ has at least five edges. If $F\left[y_{1}, y_{2}, x_{3}, x_{4}\right]$ also has at least five edges, then we are done. Otherwise, by (4) both y_{1} and y_{2} are adjacent to x_{1}, a contradiction to $d_{V_{2}}\left(x_{1}\right) \leq 2$.

Lemma 4. Let V_{1}, V_{2}, and V_{3} be disjoint vertex subsets of a graph F such that
(a) $V_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and $F_{1}=F\left(V_{1}\right) \supset K_{4}^{-}$with $x_{1} x_{4}$ possibly not in $E(F)$;
(b) $F_{2}=F\left(V_{2}\right)$ is the 4-cycle $y_{1} y_{2} y_{3} y_{4}$;
(c) $F_{3}=F\left(V_{3}\right) \in\left\{K_{1}, K_{2}, C_{3}, K_{4}, K_{4}^{-}\right\}$;
(d) $N_{F_{2}}\left(x_{1}\right)=N_{F_{2}}\left(x_{2}\right)=N_{F_{2}}\left(x_{4}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$.

If

$$
\begin{equation*}
d_{F_{3}}\left(y_{1}\right)+d_{F_{3}}\left(y_{3}\right)+2\left(d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right)\right)>4\left|V_{3}\right|, \tag{5}
\end{equation*}
$$

then $V_{1} \cup V_{2} \cup V_{3}$ can be partitioned into sets $V_{1}^{\prime}, V_{2}^{\prime}$ and V_{3}^{\prime} so that $F\left(V_{1}^{\prime}\right)$ and $F\left(V_{2}^{\prime}\right)$ contain K_{4}^{-}and $F\left(V_{3}^{\prime}\right)$ contains F_{3}.
Proof. By the symmetry between y_{1} and y_{3}, we will assume that $d_{F_{3}}\left(y_{1}\right) \geq d_{F_{3}}\left(y_{3}\right)$.
If $F_{3}=K_{1}$ with $V\left(F_{3}\right)=\{u\}$, then $y_{1}, y_{2}, y_{4} \in N(u)$. Then we have $F_{1}, F^{\prime}=\left\{y_{3}\right\}$ and $K_{4}^{-} \subseteq G\left[u, y_{1}, y_{2}, y_{4}\right]$.

Suppose $F_{3}=K_{2}$ with $V\left(F_{3}\right)=\left\{u_{1}, u_{2}\right\}$. By (5), either $F\left[u_{1}, u_{2}, y_{1}, y_{2}\right]$ or $F\left[u_{1}, u_{2}, y_{3}, y_{4}\right]$ has at least 5 edges. If it is $F\left[u_{1}, u_{2}, y_{1}, y_{2}\right]$, then we have F_{1}, F^{\prime} with $V\left(F^{\prime}\right)=\left\{y_{3}, y_{4}\right\}$ and $K_{4}^{-} \subseteq F\left[u_{1}, u_{2}, y_{1}, y_{2}\right]$. The other possibility is very similar.

If F_{3} is 3-cycle $\left(z_{1}, z_{2}, z_{3}\right)$, then $d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right) \geq 4$. If $d_{F_{3}}\left(y_{4}\right) \geq 2$, then $G\left[y_{4}, V\left(F_{3}\right)\right] \supseteq K_{4}^{-}, G\left[y_{3}, x_{2}, x_{3}, x_{4}\right]=F_{1}^{\prime}$, and $G\left[x_{1}, y_{1}, y_{2}\right]=K_{3}$. Suppose now that $d_{F_{3}}\left(y_{4}\right) \leq 1$. Then $d_{F_{3}}\left(y_{2}\right)=3$ and $d_{F_{3}}\left(y_{4}\right)=1$. It follows that $d_{F_{3}}\left(y_{1}\right)=3$ and $d_{F_{3}}\left(y_{3}\right) \geq 2$. We may assume that $y_{4} z_{1} \in E(G)$ and $y_{3} z_{2} \in E(G)$. Then $F_{2} \cup F_{3}$ can be decomposed into 3-cycle $G\left[z_{2}, y_{2}, y_{3}\right]$ and $G\left[y_{1}, y_{4}, z_{1}, z_{3}\right] \supseteq K_{4}^{-}$.

The last case is that F_{3} is a 4-cycle (with at least one chord) $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. Then since $e\left(\left\{y_{1}, y_{3}\right\}, F_{3}\right) \leq 8, d_{F_{3}}\left(y_{2}\right)+$ $d_{F_{3}}\left(y_{4}\right) \geq 5$.

If $d_{\mathrm{F}_{3}}\left(y_{2}\right)+d_{\mathrm{F}_{3}}\left(y_{4}\right)=5$, then $d_{\mathrm{F}_{3}}\left(y_{1}\right)+d_{\mathrm{F}_{3}}\left(y_{3}\right) \geq 7$, and hence $d_{\mathrm{F}_{3}}\left(y_{1}\right)=4$ and $d_{\mathrm{F}_{3}}\left(y_{3}\right) \geq 3$. Let $z \in F_{3}$ be a common neighbor of y_{2} and y_{4}. If $z y_{3} \notin E(G)$, then we have three K_{4}^{-}'s: $G\left[V\left(F_{3}\right)-z+y_{3}\right], G\left[y_{1}, y_{2}, z, y_{4}\right]$ and F_{1}. On the other hand, if $z y_{3} \in E(G)$, we also have three K_{4}^{-}'s: $G\left[V\left(F_{3}\right)-z+y_{1}\right], G\left[y_{2}, y_{3}, y_{4}, z\right]$ and F_{1}.

The following claim will be helpful.
Claim 1. Suppose that some $y \in\left\{y_{1}, y_{3}\right\}$ has a common neighbor, say $z_{1} \in F_{3}$, with y_{2}. Then y_{4} has at most two neighbors in $\left\{z_{2}, z_{3}, z_{4}\right\}$, and if it has exactly two neighbors in $\left\{z_{2}, z_{3}, z_{4}\right\}$, then $z_{2} z_{4} \notin E\left(F_{3}\right)$ (and hence $z_{1} z_{3} \in E\left(F_{3}\right)$).
Proof. Let $y^{\prime} \in\left\{y_{1}, y_{3}\right\}-y$. If y_{4} is adjacent to each of z_{2}, z_{3}, z_{4}, or is adjacent to two of them and $z_{2} z_{4} \in E\left(F_{3}\right)$, then we have three $K_{4}^{-\prime}$ s: $F\left[V\left(F_{3}\right)-z_{1}+y_{4}\right], F\left[x_{1}, y, y_{2}, z_{1}\right]$ and $F\left[y^{\prime}, x_{2}, x_{3}, x_{4}\right]$.

If $d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right)=8$, then $d_{F_{3}}\left(y_{1}\right) \geq 1$. This contradicts Claim 1.
Suppose that $d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right)=7$. In this case, $d_{F_{3}}\left(y_{1}\right)+d_{F_{3}}\left(y_{3}\right) \geq 3$, and therefore $d_{F_{3}}\left(y_{1}\right) \geq 2$. Hence y_{2} and y_{1} have a common neighbor, say, z_{1} in F_{3}. In view of Claim 1, since $d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right)=7$, we can assume that $d_{F_{3}}\left(y_{2}\right)=4$ and $z_{2} z_{4} \notin E\left(F_{3}\right)$. Then $z_{1} z_{3} \in E\left(F_{3}\right)$ and $N_{F_{3}}\left(y_{1}\right)=\left\{z_{1}, z_{3}\right\}$. Furthermore, by symmetry, we may assume that $y_{3} z_{1} \in E(F)$ and that $y_{4} z_{2} \in E(F)$. In this case, we replace F_{2} and F_{3} by $F_{2}-y_{2}+z_{1}$ and $F_{3}-z_{1}+y_{2}$.

Finally, suppose that $d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right)=6$. Then $d_{F_{3}}\left(y_{1}\right)+d_{F_{3}}\left(y_{3}\right) \geq 5$. By Lemma 2 if $F\left(V_{2} \cup V_{3}\right)$ does not contain two vertex-disjoint copies of K_{4}^{-}, then $F_{3} \neq K_{4}$. By Lemma 3, if $F\left(V_{2} \cup V_{3}\right)$ does not contain two vertex-disjoint copies of K_{4}^{-}or a copy of K_{4} and a copy of C_{4}, then there is a vertex, say z_{4}, in V_{3} and some $y_{i} \in V_{2}$ such that each $y \in V_{2}-y_{i}$ is adjacent to each $z \in V_{3}-z_{4}$ and y_{i} has at most one neighbor in V_{3}. Since $d_{F_{3}}\left(y_{2}\right)+d_{F_{3}}\left(y_{4}\right)=6, i=3$. Furthermore, in this case $z_{4} z_{2} \in E(F)$. Then we have the following 3 copies of $K_{4}^{-}: F\left[x_{2}, x_{3}, x_{4}, y_{3}\right], F\left[x_{1}, y_{1}, y_{2}, z_{1}\right]$, and $F\left[y_{4}, z_{2}, z_{3}, z_{4}\right]$.

The next lemma is similar.
Lemma 5. Let V_{1}, V_{2}, and V_{3} be disjoint vertex subsets of a graph F such that
(a) $V_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$, and $F_{1}=F\left(V_{1}\right)=K_{3}$;
(b) $F_{2}=F\left(V_{2}\right)$ is the 4-cycle $y_{1} y_{2} y_{3} y_{4}$;
(c) $F_{3}=F\left(V_{3}\right) \in\left\{K_{1}, K_{2}, C_{3}, K_{4}, K_{4}^{-}\right\}$;
(d) $N_{F_{2}}\left(x_{1}\right)=N_{F_{2}}\left(x_{2}\right)=N_{F_{2}}\left(x_{3}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$.

If

$$
\begin{equation*}
d_{\mathrm{F}_{3}}\left(y_{1}\right)+d_{\mathrm{F}_{3}}\left(y_{3}\right)+2\left(d_{\mathrm{F}_{3}}\left(y_{2}\right)+d_{\mathrm{F}_{3}}\left(y_{4}\right)\right)>4\left|V_{3}\right|, \tag{6}
\end{equation*}
$$

then $V_{1} \cup V_{2} \cup V_{3}$ can be partitioned into sets $V_{1}^{\prime}, V_{2}^{\prime}$ and V_{3}^{\prime} so that $F\left(V_{1}^{\prime}\right)$ is $K_{3}, F\left(V_{2}^{\prime}\right)$ contains K_{4}^{-}, and $F\left(V_{3}^{\prime}\right)$ contains F_{3}.
The proof of this lemma mimics that of Lemma 4 but is much simpler, so we omit it.

4. Packing 3- and 4-cycles

In this section, we will prove Theorem 4 . Let \mathscr{H}_{n} be the class of n-vertex graphs whose every component is either K_{1}, or K_{2}, or K_{3}, or K_{4}^{-}. Let \mathscr{H}_{n}^{\prime} consist of graphs H in \mathscr{H}_{n} such that at most one component of H is K_{2}.

It is enough to prove the theorem for graphs in \mathscr{H}_{n}^{\prime}, since each graph $H \in \mathscr{H}_{n}$ is contained in a graph $H^{\prime} \in \mathscr{H}_{n}^{\prime}$ (we can replace two copies of K_{2} in H by a copy of K_{4}^{-}). Let G satisfy the conditions of the theorem. Suppose, for a contradiction, that G does not contain some graph in \mathscr{H}_{n}^{\prime}. Among such 'bad' graphs in \mathscr{H}_{n}^{\prime} choose a graph H_{0} with fewest components that are K_{4}^{-}s. Suppose that H_{0} has no K_{4}^{-}-components. The following corollary of Theorem 2 handles this case.

Proposition 1. Let $\mathscr{H}_{n}^{\prime \prime}$ be the class of n-vertex graphs whose every component is either K_{1}, or K_{2}, or K_{3}, and at most one of these components is K_{2}. Then every n-vertex graph G with $\sigma_{2}(G) \geq 4 n / 3-1$ contains each graph in $\mathscr{H}_{n}^{\prime \prime}$.
Proof. If $n=3 k$, then the statement directly follows from Theorem 2.
If $n=3 k+1$, then $\sigma_{2}(G) \geq\lceil 4(3 k+1) / 3-1\rceil=4 k+1$ and hence for any vertex $v \in V(G)$, graph $G-v$ satisfies the conditions of Theorem 2. Hence $G-v$ contains each graph in $\mathscr{H}_{n-1}^{\prime \prime}$. On the other hand, if $n=3 k+1$, then at least one component of any graph $H \in \mathscr{H}_{n}^{\prime \prime}$ is K_{1}. This settles the case $n=3 k+1$.

If $n=3 k-1$, then $\sigma_{2}(G) \geq\lceil 4(3 k-1) / 3-1\rceil=4 k-2$. Adding to G a new vertex z adjacent to each other vertex, we get a graph G^{*} satisfying Theorem 2 . Hence G^{*} contains k disjoint triangles. It follows that G contains the graph H_{n}^{*} that has one K_{2}-component and $k-1 K_{3}$-components. But such an H_{n}^{*} contains each graph in $\mathscr{H}_{n}^{\prime \prime}$.

Assume now that H_{0} contains some K_{4}^{-}s.
Proposition 2. Let $H_{0}^{\prime \prime}$ be obtained from H_{0} by replacing one component K_{4}^{-}with C_{4}. Then G contains $H_{0}^{\prime \prime}$.
Proof. Suppose not. Let H_{0}^{\prime} be the graph obtained from H_{0} by replacing one component K_{4}^{-}with the graph $C_{3} \cup K_{1}$. By the choice of H_{0}, G contains H_{0}^{\prime}. Among all copies of H_{0}^{\prime} contained in G choose a copy H with most components K_{4}^{-}embedded into K_{4}-subgraphs of G.

Choose in H a K_{3}-component with vertex set $W=\left\{w_{1}, w_{2}, w_{3}\right\}$ and a K_{1}-component v. By the choice of $H, K_{4}^{-} \nsubseteq$ $G\left[w_{1}, w_{2}, w_{3}, v\right]$. Then v has at most one neighbor in W.

For every $U \subseteq V(G)$, define $D(U)=3 d_{U}(v)+d_{U}\left(w_{1}\right)+d_{U}\left(w_{2}\right)+d_{U}\left(w_{3}\right)$.
CASE 1. $D(V(G)) \geq 3 \sigma_{2}(G)$. In this case,

$$
D(V(G)) \geq 3 \sigma_{2}(G)-7-3 \geq 4 n-3-10>4(n-4)
$$

and hence there is a component of H with vertex set $U \subset V(G)$ such that

$$
\begin{equation*}
D(U)>4|U| . \tag{7}
\end{equation*}
$$

If $U=\{u\}$, then u has at least two neighbors in W and thus $G[W+u]$ contains K_{4}^{-}. But then G contains H_{0}, a contradiction.
Suppose that $U=\left\{u_{1}, u_{2}\right\}$ and $G[U]=K_{2}$. By (7), v has a neighbor, say, u_{1} in U. If u_{2} has at least two neighbors in W, then $G\left[W+u_{2}\right] \supseteq K_{4}^{-}$and $G\left[v, u_{1}\right]=K_{2}$, a contradiction to the choice of G. Otherwise, again by (7), vu$u_{2} \in E(G)$. Then similarly, u_{1} also has at most one neighbor in W, a contradiction to (7).

If $G[U]$ is a triangle, then $e(W, U) \leq 9$, and hence there are at least two edges between v and U. Thus $G[U+v]$ contains K_{4}^{-}and $G[W]$ contains a 3 -cycle. Again G contains H_{0}, a contradiction.

Now suppose that $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U] \supseteq K_{4}^{-}$with possible non-edge $u_{1} u_{3}$. By (7), $3 d_{U}(v)+e(W, U) \geq 17$. Since $e(W, U) \leq 12, d_{U}(v) \geq 2$. If $d_{U}(v)=2$, then u_{1} or u_{3} (we may assume u_{1}) has three neighbors in W, thus $G\left[W+u_{1}\right]=K_{4}$ and then by the choice of $H, G[U]$ is also K_{4}. Note that if some non-neighbor of v in U has at least two neighbors in W, then we again can embed H_{0} into G. Thus $16<D(U) \leq 3 d_{U}(v)+4-d_{U}(v)+3 d_{U}(v)=4+5 d_{U}(v)$, and therefore $d_{U}(v) \geq 3$, a contradiction. So $d_{U}(v) \geq 3$. If $u_{2}, u_{4} \in N(v)$, then $G[U]=K_{4}$, since $G\left[N_{U}[v]\right]$ contains K_{4}. But then as above each vertex in U has at most one neighbor in W, and we have $16<D(U) \leq 3 d_{U}(v)+4 \leq 16$, a contradiction. So we assume that $u_{1}, u_{2}, u_{3} \in N(v)$ and $u_{4} \notin N(v)$. Then again, every vertex in U has at most one neighbor in W, and we have a contradiction.

CASE 2. $D(V(G))<3 \sigma_{2}(G)$. Then v has exactly one neighbor in W, say w_{1}. By the definition of $\sigma_{2}, d(v)+d\left(w_{i}\right) \geq \sigma_{2}(G)$ for $i=2$, 3, and hence $2 d_{G-W-v}(v)+d_{G-W-v}\left(w_{2}\right)+d_{G-W-v}\left(w_{3}\right) \geq 2 \sigma_{2}(G)-6>\frac{8}{3}(n-4)$. Therefore there is a component of H with vertex set $U \subset V(G)$ such that

$$
\begin{equation*}
2 d_{U}(v)+d_{U}\left(w_{2}\right)+d_{U}\left(w_{3}\right)>\frac{8}{3}|U| . \tag{8}
\end{equation*}
$$

On the other hand, since $D(V(G))<3 \sigma_{2}(G)$, we have $d(v)+d\left(w_{1}\right)<\sigma_{2}(G)$ and hence

$$
\begin{equation*}
d\left(w_{1}\right)<\min \left\{d\left(w_{2}\right), d\left(w_{3}\right)\right\} \tag{9}
\end{equation*}
$$

If $U=\{u\}$, then u is adjacent to v and to at least one of w_{2} and w_{3}. Thus we have a 4-cycle, a contradiction.
If $U=\left\{u_{1}, u_{2}\right\}$ and $G[U]=K_{2}$, then by (8), $2 d_{U}(v)+d_{U}\left(w_{2}\right)+d_{U}\left(w_{3}\right) \geq 6$. Similarly to Case 1 , if u_{i} is adjacent to both w_{2} and w_{3}, and $u_{3-i} v \in E(G)$, then we have disjoint K_{4}^{-}and K_{2}, a contradiction. Hence, $d_{W-w_{1}}\left(u_{i}\right)+2 d_{\{v\}}\left(u_{3-i}\right) \leq 3$ for $i=1,2$. It is possible only if $v u_{1}, v u_{2} \in E(G)$ and each u_{i} has exactly one neighbor in $\left\{w_{2}, w_{3}\right\}$. If this is the same neighbor, say w_{2}, then we have $G\left[v, u_{1}, u_{2}, w_{2}\right]=K_{4}^{-}$and $G\left[w_{3}, w_{1}\right]=K_{2}$. If these neighbors are distinct, say $u_{1} w_{2}, u_{2} w_{3} \in E(G)$, then $G\left[v, u_{1}, w_{2}, w_{1}\right]=C_{4}$ and $G\left[w_{3}, u_{2}\right]=K_{2}$. Both outcomes contradict the choice of G.

If $G[U]=K_{3}$, then $2 d_{U}(v) \geq 9-6=3$ and so v is adjacent to at least two of the vertices in U. Hence $G[U+v]$ contains K_{4}^{-}and $G[W]$ contains a 3 -cycle, a contradiction.

If $G[U]=K_{4}$, then by $(8), 2 d_{U}(v) \geq 11-8=3$ and so $d_{U}(v) \geq 2$. If there is $u \in V(U)$ such that $d_{W}(u) \geq 2$ and $d_{U-u}(v) \geq 2$, then we partition $G[W \cup \bar{U}+v]$ into two $K_{4}^{-}: G[W+u]$ and $G[U-u+v]$, a contradiction to the choice of G. Thus the only possibility to satisfy (8) is that $d_{U}(v)=4$ and each vertex in U has at most one neighbor in W. Since by (8), $d_{U}\left(w_{2}\right)+d_{U}\left(w_{3}\right) \geq 11-8=3$, we may assume that for some $u \in U, u w_{3} \in E(G)$ and therefore $u w_{1}, u w_{2} \notin E(G)$. By (9), $d(u)+d\left(w_{3}\right) \geq d(u)+d\left(w_{1}\right) \geq \sigma_{2}(G)$, and hence $3 d(u)+d\left(w_{1}\right)+d\left(w_{2}\right)+d\left(w_{3}\right) \geq 3 \sigma_{2}$. Since $G\left[U-u_{1}+v\right]=K_{4}$, we come to Case 1 , which is resolved.

Finally suppose that $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U]=K_{4}^{-}$with non-edge $u_{2} u_{4}$. As in the previous paragraph, $d_{U}(v) \geq 2$. Suppose first that $N(v) \cap U=\left\{u_{i}, u_{i+1}\right\}$ for some i, say, for $i=1$. Then by (8), $d_{U}\left(w_{2}\right)+d_{U}\left(w_{3}\right) \geq 7$. In particular, $d_{U-u_{2}}\left(w_{j}\right) \geq 2$ for $j=2$, 3 and we may assume that $w_{3} u_{2} \in E(G)$. Then $G\left[U-u_{2}+w_{2}\right]$ contains K_{4}^{-}and $G\left[W-w_{2}+v+u_{2}\right]$ contains C_{4}. If $N(v) \cap U \neq\left\{u_{i}, u_{i+1}\right\}$ for some i, then $N(v) \cap U \supseteq\left\{u_{i}, u_{i+2}\right\}$ for some $i \in\{1,2\}$. If for some $j \neq i, i+2$, vertex u_{j} has at least two neighbors in W, then $G\left[W+u_{j}\right]$ contains K_{4}^{-}and $G\left[U-u_{j}+v\right]$ contains C_{4}. Hence for each $j \neq i, i+2$, vertex u_{j} has at most one neighbor in W. In particular, by $(8), d_{U}(v) \geq 3$. If $N_{U}(v)$ contains a triangle, say $U-u_{4}$, then $G[U+v]$ contains $K_{4} \cup K_{1}$, a contradiction to the choice of H. Otherwise, we may assume that $N_{U}(v)=\left\{u_{2}, u_{3}, u_{4}\right\}$. In this case, each $u \in U$ has at most one neighbor in W, which together with (8) yields $d_{U}(v) \geq 4$. A contradiction to our last assumption finishes the proof of Proposition 2.

Fix an embedding of $H_{0}^{\prime \prime}$ into G provided by Proposition 2. Suppose that the C_{4}-component of $H_{0}^{\prime \prime}$ is embedded into 4-cycle $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ in G. Let $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. By the choice of $G, w_{1} w_{3}, w_{2} w_{4} \notin E(G)$. Since $\left(d\left(w_{1}\right)+d\left(w_{3}\right)\right)+\left(d\left(w_{2}\right)+\right.$ $\left.d\left(w_{4}\right)\right) \geq 2 \sigma_{2}(G)$, we have $\sum_{i=1}^{4} d_{G-W}\left(w_{i}\right) \geq 2 \sigma_{2}(G)-8 \geq \frac{8 n}{3}-10>\frac{8}{3}(n-4)$. Hence there exists a component of $H_{0}^{\prime \prime}$ mapped to a set $U \subset V(G)$ with

$$
\begin{equation*}
e(W, U)>\frac{8}{3}|U| . \tag{10}
\end{equation*}
$$

CASE 1. $U=\{v\}$. Since $e(v, W) \geq 3, N(v)+v$ contains K_{4}^{-}and $G[W-N(v)]$ is K_{1}. This contradicts the choice of G.
CASE 2. $U=\left\{u_{1}, u_{2}\right\}$ and $G[U]=K_{2}$. Since $e(W, U) \geq\lceil 16 / 3\rceil=6$, we may assume that $e\left(\left\{w_{1}, w_{2}\right\}, U\right) \geq 3$. Then $G\left[w_{1}, w_{2}, u_{1}, u_{2}\right]$ contains K_{4}^{-}and $G\left[w_{3}, w_{4}\right]=K_{2}$, a contradiction to the choice of G.

CASE 3. $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $G[U]=K_{3}$. Then $e(W, U) \geq 9$. Suppose that we cannot decompose $G[U \cup W]$ into K_{4}^{-}and K_{3}. Then by Lemma 1, there is a vertex, say w_{4}, in W such that $N_{W}\left(u_{i}\right)=W-w_{4}$ for $i=1,2$, 3. Since $d_{G-W}\left(w_{1}\right)+d_{G-W}\left(w_{3}\right)+2\left(d_{G-W}\left(w_{2}\right)+d_{G-W}\left(w_{4}\right)\right) \geq 3 \sigma_{2}(G)-8>4(n-4)$, there exists a component of $H_{0}^{\prime \prime}$ mapped to a set $U^{\prime} \subset V(G)$ with $e\left(U^{\prime}, W\right)=d_{U^{\prime}}\left(w_{1}\right)+d_{U^{\prime}}\left(w_{3}\right)+2\left(d_{U^{\prime}}\left(w_{2}\right)+d_{U^{\prime}}\left(w_{4}\right)\right)>4\left|U^{\prime}\right|$. Since U does not satisfy this condition, $U^{\prime} \neq U$. Applying Lemma 5 with $F_{1}=U, F_{2}=U_{0}$ and $F_{3}=U^{\prime}$, we again get a contradiction to the choice of G.

CASE 4. $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U]=K_{4}^{-}$with $u_{1} u_{4} \notin E(G)$. Suppose that we cannot partition $G[U \cup W]$ into two K_{4}^{-}or into K_{4} and C_{4}. Since $e(W, U) \geq 11$, by Lemma 3, we may assume that each of w_{1}, w_{2}, and w_{3} is adjacent to each of u_{1}, u_{2}, and u_{4} and that w_{4} and w_{2} have no common neighbors in U. Since $d\left(w_{1}\right)+d\left(w_{3}\right)+2\left(d\left(w_{2}\right)+d\left(w_{4}\right)\right) \geq 3 \sigma_{2}(G)$, there exists a component of $H_{0}^{\prime \prime}$ mapped to some $U^{\prime} \subset V(G)$ with $d_{U^{\prime}}\left(w_{1}\right)+d_{U^{\prime}}\left(w_{3}\right)+2\left(d_{U^{\prime}}\left(w_{2}\right)+d_{U^{\prime}}\left(w_{4}\right)\right)>4\left|U^{\prime}\right|$. Note that $U^{\prime} \neq U$, since $d_{U}\left(w_{2}\right)+d_{U}\left(w_{4}\right) \leq|U|$. Then $G\left[U \cup W \cup U^{\prime}\right]$ satisfies the conditions of Lemma 4 , which proves this case.

CASE 5. $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U]=K_{4}$. If $G[W \cup U]$ contains two disjoint copies of K_{4}^{-}, then by Lemma 2 , there are $u_{4} \in U$ and $w_{4} \in W$ such that (i) $N_{W-w_{4}}\left(u_{1}\right)=N_{W-w_{4}}\left(u_{2}\right)=N_{W-w_{4}}\left(u_{3}\right)=W-w_{4}$, and (ii) w_{4} has at most one neighbor in U and $\left|E_{G}(W, U)\right|=11$. Since $d\left(w_{1}\right)+d\left(w_{3}\right)+2\left(d\left(w_{2}\right)+d\left(w_{4}\right)\right) \geq 3 \sigma_{2}(G)$, there exists a component of $H_{0}^{\prime \prime}$ mapped to some $U^{\prime} \subset V(G)$ with $d_{U^{\prime}}\left(w_{1}\right)+d_{U^{\prime}}\left(w_{3}\right)+2\left(d_{U^{\prime}}\left(w_{2}\right)+d_{U^{\prime}}\left(w_{4}\right)\right)>4\left|U^{\prime}\right|$. By $(\mathrm{ii}), U^{\prime} \neq U$. Then $G\left[U \cup W \cup U^{\prime}\right]$ satisfies the conditions of Lemma 4, which finishes the proof.

5. Two reductions

In this section, we prove two lemmas that will help us later to find a special subgraph H in a graph satisfying (1).
Let the microphone graph M_{1} be the 5-vertex graph such that a 4-vertex subgraph of M_{1} is K_{4} and the fifth vertex has exactly one neighbor in M_{1}.

Lemma 6. Let H be an n-vertex graph whose components are isomorphic to graphs in $\mathscr{H}=\left\{K_{1}, K_{2}, C_{3}, K_{4}^{-}, C_{5}^{+}\right\}$. Let H_{1} be the graph obtained from H by replacing a copy of C_{5}^{+}with a copy of the microphone graph. If an n-vertex graph G satisfying (1) contains H_{1}, then it contains H, as well.

Proof. Suppose not. Fix an embedding of H_{1} into G. Suppose that the component M_{1} of H_{1} is embedded into the subset $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ of $V(G)$ so that $G\left[A-a_{5}\right]=K_{4}$. Since G does not contain H, we may assume that the only neighbor of a_{5} in A is a_{4}. For every $W \subseteq V(G)$, consider the expression $D(W)=3 d_{W}\left(a_{5}\right)+d_{W}\left(a_{1}\right)+d_{W}\left(a_{2}\right)+d_{W}\left(a_{3}\right)$. Since $D(V(G)) \geq 3 \sigma_{2}$, we have $D(V(G)-A) \geq 3 \sigma_{2}-2|E(G[A])| \geq(4 n-3)-14>4(n-5)$, and hence there exists a component of H_{1} mapped to a set $U \subset V(G)$ with $\bar{D}(U)>4|U|$. Let $A_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}$.

CASE 1: $U=\{u\}$. By the choice of $U, D(U) \geq 5$. Then u is adjacent to a_{5} and at least two vertices in A_{1}. Hence $G\left[A-a_{5}+u\right]$ contains C_{5}^{+}.

CASE 2: $U=\left\{u_{1}, u_{2}\right\}$ and $G[U]=K_{2}$. By the choice of $U, D(U) \geq 9$. Then some vertex of U, say u_{1}, has at least two neighbors in A_{1}. If $a_{5} u_{2} \in E(G)$, then $G\left[A-a_{5}+u_{1}\right]$ contains C_{5}^{+}and $G\left[u_{2}, a_{5}\right]=K_{2}$. If $a_{5} u_{2} \notin E(G)$, then the only way to have $D(U) \geq 9$ is that u_{1} is adjacent to all vertices in $A-a_{4}$ and u_{2} is adjacent to all vertices in A_{1}. In this case, after switching the roles of u_{2} and u_{1}, the previous argument works.

Observe that in order to have $D(U)>4|U|$ for any U with $|U| \geq 3$, we need

$$
\begin{equation*}
d_{U}\left(a_{5}\right) \geq 2 \tag{11}
\end{equation*}
$$

CASE 3: $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $G[U]=K_{3}$. By the choice of $U, D(U) \geq 13$. Some vertex in U, say u_{1}, has at least two neighbors in A_{1}. If $a_{5} u_{2}, a_{5} u_{3} \in E(G)$, then $G\left[A-a_{5}+u_{1}\right]$ contains C_{5}^{+}and $G\left[a_{5}, u_{2}, u_{3}\right]=K_{3}$. Hence we may assume that $N\left(a_{5}\right) \cap U=\left\{u_{1}, u_{2}\right\}$. Then by the above $d_{A_{1}}\left(u_{3}\right) \leq 1$. So, to have $D(U) \geq 13$, we need $N\left(u_{2}\right) \cap A_{1}=N\left(u_{1}\right) \cap A_{1}=A_{1}$ and $d_{A_{1}}\left(u_{3}\right)=1$. Let $a \in A_{1}$ be the neighbor of u_{3} in A_{1}. Then $G\left[a_{4}, a_{5}, u_{1}, u_{3}, a\right]$ contains C_{5}^{+}and $G\left[A_{1}-a+u_{1}\right]$ is a triangle, a contradiction.

CASE 4: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U] \supset K_{4}^{-}$with $u_{1} u_{3}$ as the only possible non-edge. By the choice of $U, D(U) \geq 17$. If $G\left[U+a_{5}\right]$ contains C_{5}^{+}, we are done. By (11), $G\left[C+a_{5}\right]$ does not contain C_{5}^{+}only if $N\left(a_{5}\right) \cap U=\left\{u_{2}, u_{4}\right\}$ and $u_{1} u_{3} \notin E(G)$. Therefore, there are at least 11 edges between A_{1} and U, and we can find $a \in A_{1}$ and $u \in\left\{u_{1}, u_{3}\right\}$ such that $U-u \subseteq N(a)$ and $A_{1}-a \in N(u)$. Then $G\left[U-u+a+a_{5}\right]$ contains C_{5}^{+}and $G\left[A_{1}-a_{5}-a+u\right]$ contains K_{4}^{-}.

CASE 5: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $G[U]$ contains cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ and edge $u_{2} u_{5}$. By the choice of $U, D(U) \geq 21$. We may assume that a_{1} has the most neighbors in U among vertices in A_{1}. Since $D(U) \geq 21$,

$$
\begin{equation*}
d_{U}\left(a_{5}\right)+d_{U}\left(a_{1}\right) \geq 7 \tag{12}
\end{equation*}
$$

Subcase 5.1: $d_{U}\left(a_{1}\right)=5$. If some neighbor u of a_{5} in U is adjacent to a_{2} or a_{3}, then either of $G\left[A-a_{1}+u\right]$ and $G\left[U-u+a_{1}\right]$ contains C_{5}^{+}, a contradiction. Otherwise, $e\left(A_{1}, U\right) \leq 15-2 d_{U}\left(a_{5}\right)$ and hence $D(U) \leq 15+d_{U}\left(a_{5}\right) \leq 20$, a contradiction again.

Subcase 5.2: $d_{U}\left(a_{5}\right)=3$. Since $e\left(A_{1}, U\right) \leq 21-9=12$ and $d_{U}\left(a_{1}\right) \leq 4$, we have $d_{U}(a)=4$, for each $a \in A_{1}$. Then a_{5} has at least two common neighbors in U with a_{1}, say, u and u^{\prime}. If $G\left[U-u+a_{2}\right] \supseteq C_{5}^{+}$or $G\left[U-u^{\prime}+a_{2}\right] \supseteq C_{5}^{+}$, then we are done, since in this case either of $G\left[A-a_{2}+u\right]$ and $G\left[A-a_{2}+u^{\prime}\right]$ also contains C_{5}^{+}. Otherwise, u and u^{\prime} are the two vertices next on the cycle ($u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$) to the non-neighbor of a_{2} in U, and the third neighbor of a_{5} in U is the non-neighbor of a_{1}. By the symmetry between a_{1}, a_{2} and a_{3}, we conclude that u and u^{\prime} are adjacent to all vertices in A_{1}, and the third neighbor of a_{5} is adjacent to none of them. Let the non-neighbors of a_{5} in U be u_{i} and u_{i+1}. Then either of $G\left[U-a_{3}+u_{i}\right]$ and $G\left[U-u_{i}+a_{5}+a_{3}\right]$ contains C_{5}^{+}.

Subcase 5.3: $d_{U}\left(a_{5}\right)=4$. Let u_{i} be the non-neighbor of a_{5} in U. If some $u \in U-u_{i-1}-u_{i+1}$ has at least two neighbors in A_{1}, then either of $G\left[A-a_{5}+u\right]$ and $G\left[U-u+a_{5}\right]$ contains C_{5}^{+}. Otherwise, to have $D(U) \geq 21$, we need $d_{A_{1}}\left(u_{i-1}\right)=d_{A_{1}}\left(u_{i+1}\right)=3$ and $d_{A_{1}}\left(u_{i}\right)=d_{A_{1}}\left(u_{i-2}\right)=d_{A_{1}}\left(u_{i+2}\right)=1$. Since $d_{U}\left(a_{1}\right) \leq 4$, no vertex in A_{1} is a common neighbor of u_{i-2}, u_{i}, and u_{i+2}. By the symmetry between u_{i-2} and u_{i+2}, we may assume that for some distinct $a, a^{\prime} \in A_{1}, u_{i-2} a, u_{i} a^{\prime} \in E(G)$. Let $a^{\prime \prime}$ be the third vertex in A_{1}. Then either of $G\left[A-a-a^{\prime}+u_{i-2}+u_{i+2}\right]$ and $G\left[U+a+a^{\prime}-u_{i-2}-u_{i+2}\right]$ contains C_{5}^{+}.

Subcase 5.4: $d_{U}\left(a_{5}\right)=5$. Since $D(U) \geq 21$, some $u \in U$ has at least 2 neighbors in A_{1}. Then either of $G\left[A-a_{5}+u\right]$ and $G\left[U-u+a_{5}\right]$ contains C_{5}^{+}.

The T-graph is the 5 -vertex graph obtained from $K_{2,3}$ by adding an edge connecting the two vertices of degree 3 . Equivalently, the T-graph is the 5 -vertex graph obtained from K_{5} by deleting the edges of a triangle. Sometimes, the T-graph is also called the book with 3 pages.

Lemma 7. Let H be an n-vertex graph whose components are isomorphic to graphs in $\mathscr{H}=\left\{K_{1}, K_{2}, C_{3}, K_{4}^{-}, C_{5}^{+}\right\}$. Let H_{2} be the graph obtained from H by replacing a copy of C_{5}^{+}with a copy of the T-graph. If an n-vertex graph G satisfying (1) contains H_{2}, then it contains H, as well.

Proof. Suppose not. Fix an embedding of H_{2} into G. Suppose that the T-graph component of H_{2} is mapped to a subset $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ of $V(G)$ so that $d_{A}\left(a_{4}\right)=d_{A}\left(a_{5}\right)=4$. Since G does not contain H, the set $A_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}$ is independent in G. For every $W \subseteq V(G)$, consider the expression $D(W)=d_{W}\left(a_{1}\right)+d_{W}\left(a_{2}\right)+d_{W}\left(a_{3}\right)$. Since $D(V(G)) \geq \frac{3}{2} \sigma_{2}$, we have $D(V(G)-A) \geq \frac{3}{2} \sigma_{2}-6 \geq(4 n-3) / 2-6>2(n-5)$, and hence there exists a component of H_{2} mapped to a set $U \subset V(G)$ with $D(U)>2|U|$. By symmetry, we may assume that

$$
\begin{equation*}
d_{U}\left(a_{1}\right) \geq d_{U}\left(a_{2}\right) \geq d_{U}\left(a_{3}\right) \tag{13}
\end{equation*}
$$

CASE 1: $U=\{u\}$. By the choice of $U, D(U) \geq 3$. In particular, $a_{1} u, a_{2} u \in E(G)$. Then $G\left[A-a_{3}+u\right]$ contains C_{5}^{+}.
CASE 2: $U=\left\{u_{1}, u_{2}\right\}$ and $G[U]=K_{2}$. By the choice of $U, D(U) \geq 5$. So, we may assume that among the edges connecting A_{1} with U only $a_{3} u_{2}$ is missing. Then $G\left[a_{3}, u_{1}\right]=K_{2}$ and $G\left[A+u_{2}-a_{3}\right]$ contains C_{5}^{+}.

CASE 3: $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $G[U]=K_{3}$. By the choice of $U, D(U) \geq 7$. So, by (13), $d_{U}\left(a_{1}\right)=3$ and $d_{U}\left(a_{2}\right) \geq 2$. Then $G\left[U \cup\left\{a_{1}, a_{2}\right\}\right]$ contains C_{5}^{+}and $G\left[A-a_{1}-a_{2}\right]=K_{3}$.

CASE 4: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U] \supset K_{4}^{-}$. By the choice of $U, D(U) \geq 9$. Hence by (13), $d_{U}\left(a_{1}\right) \geq D(U) / 3 \geq 3$. Then $G\left[U+a_{1}\right]$ contains C_{5}^{+}and $G\left[A-a_{1}\right]=K_{4}^{-}$.

CASE 5: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $G[U]$ contains cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ and edge $u_{2} u_{5}$. By the choice of $U, D(U) \geq 11$. $\operatorname{By}(13), d_{U}\left(a_{1}\right) \geq 4$.

Subcase 5.1: $d_{U}\left(a_{1}\right)=5$. Since $d_{U}\left(a_{2}\right)+d_{U}\left(a_{3}\right) \geq 6$, some $u \in U$ is adjacent to both of them. Then either of $G\left[A-a_{1}+u\right]$ and $G\left[U-u+a_{1}\right]$ contains C_{5}^{+}.

Subcase 5.2: $d_{U}\left(a_{1}\right)=4$. Then $d_{U}\left(a_{2}\right)=4$ and $d_{U}\left(a_{3}\right) \geq 3$ also. Let u_{i} be the only non-neighbor of a_{1} in U. If any $u \in U-u_{i-1}-u_{i+1}$ is adjacent to both a_{2} and a_{3}, then again either of $G\left[A-a_{1}+u\right]$ and $G\left[U-u+a_{1}\right]$ contains C_{5}^{+}. Otherwise, the only possibility to have $D(U) \geq 11$ is that $d_{A_{1}}\left(u_{i-1}\right)=d_{A_{1}}\left(u_{i+1}\right)=3, d_{A_{1}}\left(u_{i-2}\right)=d_{A_{1}}\left(u_{i+2}\right)=2$, and $d_{A_{1}}\left(u_{i}\right)=1$.

Let $a_{j}=a_{1}$ when $d_{A_{1}}\left(u_{1}\right)=3$, and let a_{j} be the only non-neighbor of u_{1} in A_{1} when $d_{A_{1}}\left(u_{1}\right)=2$. So, if $d_{A_{1}}\left(u_{1}\right) \geq 2$, then $G\left[A-a_{j}+u_{1}\right]$ contains a C_{5}^{+}. Furthermore, since $d_{U-u_{1}}\left(a_{j}\right) \geq 3$ and $u_{2} u_{5} \in E(G), G\left[U+a_{j}-u_{1}\right]$ also contains C_{5}^{+}. Thus, the only remaining possibility is that $i=1$. By the symmetry between a_{1} and a_{2}, the only non-neighbor of a_{2} in U is also u_{1}. Hence $N_{U}\left(a_{3}\right)=\left\{u_{5}, u_{1}, u_{2}\right\}$. Then $G\left[A-a_{3}+u_{4}\right]$ contains C_{5}^{+}and $G\left[U-u_{4}+a_{3}\right]$ is the microphone graph. This means that G contains the graph H_{1} obtained from H by replacing a copy of C_{5}^{+}by a copy of the microphone graph. Hence by Lemma 6 , G contains H, a contradiction.

6. Proof of Theorem 3

Similarly to Section 4 , let \mathscr{H}_{n} be the class of n-vertex graphs whose every component is either K_{1}, or K_{2}, or K_{3}, or K_{4}^{-}, or C_{5}^{+}. Let G satisfy the conditions of the theorem. Suppose, for a contradiction, that G does not contain some graph in \mathscr{H}_{n}. Among such 'bad' graphs in \mathscr{H}_{n} choose a graph H_{0} with fewest components that are C_{5}^{+}. By Theorem $4, H_{0}$ has a C_{5}^{+}-component. Let H_{0}^{\prime} be obtained from H_{0} by replacing a C_{5}^{+}-component with K_{4}^{-}and an isolated vertex. By the minimality of H_{0}, there exists an embedding of H_{0}^{\prime} in G. Among embeddings of H_{0}^{\prime} in G, choose and fix one such that
$\left(^{*}\right)$ it has the largest total number of edges in subgraphs of G induced by the components of H_{0}^{\prime}.
Suppose that the isolated vertex of H_{0}^{\prime} is mapped to a vertex $v \in V(G)$ and a K_{4}^{-}-component of H_{0}^{\prime} is mapped to a set $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} \subset V(G)$, where only $w_{1} w_{3}$ can be a non-edge of $G[W]$. Since $G[W+v]$ does not contain C_{5}^{+}, only the three cases below are possible up to symmetry.

CASE 1. $N(v) \cap W \subseteq\left\{w_{1}\right\}$. For every $Y \subseteq V(G)$, consider the expression $D(Y)=3 d_{Y}(v)+d_{Y}\left(w_{2}\right)+d_{Y}\left(w_{3}\right)+d_{Y}\left(w_{4}\right)$. Since $D(V(G)) \geq 3 \sigma_{2}$, we have $D(V(G)-W-v) \geq 3 \sigma_{2}-(3+3+3+3) \geq(4 n-3)-12>4(n-5)$, and hence there exists a component of H_{0}^{\prime} mapped to a set $U \subset V(G)$ with $D(U)>4|U|$. Denote $W_{1}=W-w_{1}$.

Case 1.1: $U=\{u\}$. By the choice of $U, D(U) \geq 5$. Then u is adjacent to v and to at least two vertices in W_{1}. Hence $G[W+u]$ contains either C_{5}^{+}or the T-graph. By Lemma 7, this contradicts the choice of G.

Case 1.2: $U=\left\{u_{1}, u_{2}\right\}$ and $G[U]=K_{2}$. By the choice of $U, D(U) \geq 9$. Then some vertex of U, say u_{1}, has at least two neighbors in W_{1}. If $v u_{2} \in E(G)$, then $G\left[u_{2}, v\right]=K_{2}$ and $G\left[W+u_{1}\right]$ contains either C_{5}^{+}or the T-graph. If $v u_{2} \notin E(G)$, then the only way to have $D(U) \geq 9$, is that both u_{1} and u_{2} are adjacent to all vertices in W_{1} and $u_{1} v \in E(G)$. But then after switching the roles of u_{2} and u_{1}, the previous argument works.

Observe that in order to have $D(U)>4|U|$ for a U with $|U| \geq 3$, we need

$$
\begin{equation*}
d_{U}(v) \geq 2 \tag{14}
\end{equation*}
$$

Case 1.3: $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $G[U]=K_{3}$. By the choice of $U, D(U) \geq 13$. Some vertex in U, say u_{1}, has at least two neighbors in W_{1}. If $v u_{2}, v u_{3} \in E(G)$, then $G\left[v, u_{2}, u_{3}\right]$ is a triangle and $G\left[W+u_{1}\right]$ contains either C_{5}^{+}or the T-graph. Hence we may assume that $v u_{3} \notin E(G)$ and, by (14), $N(w) \cap U=\left\{u_{1}, u_{2}\right\}$. Then by the above argument, $d_{W_{1}}\left(u_{3}\right) \leq 1$. So, to have $D(U) \geq 13$, we need $N\left(u_{2}\right) \cap W_{1}=N\left(u_{1}\right) \cap W_{1}=W_{1}$ and $d_{W_{1}}\left(u_{3}\right)=1$. In this case, $G\left[U+v+w_{3}\right]$ contains the T-graph and $G\left[W-w_{3}\right]=K_{3}$.

Case 1.4: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $G[U] \supset K_{4}^{-}$with $u_{1} u_{3}$ as the only possible non-edge. By (14), $G[U+v]$ contains either C_{5}^{+}, or the T-graph.

Case 1.5: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $G[U]$ contains cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ and edge $u_{2} u_{5}$. By the choice of $U, D(U) \geq 21$.
Subcase 1.5.1: $d_{U}(v)=5$. Since $D(U) \geq 21$, some $u \in U$ has at least two neighbors in $W-w_{1}$. Then $G[U-u+v]$ contains C_{5}^{+}and $G[W+u]$ contains either \bar{C}_{5}^{+}, or the T-graph.

Subcase 1.5.2: $d_{U}(v)=4$. Let u_{i} be the only non-neighbor of v in U. If $d_{U}\left(u_{i}\right)<4$, then $G\left[U-u_{i}+v\right]$ has more edges than $G[U]$, a contradiction to (${ }^{*}$). So, $d_{U}\left(u_{i}\right)=4$. Hence for each $j, G\left[U-u_{j}+v\right]$ contains C_{5}^{+}. If follows that we are done if for some j, u_{j} has at least two neighbors in W. Otherwise, $D(U) \leq 3 \cdot 4+5 \cdot 1=17$, a contradiction.

Subcase 1.5.3: $d_{U}(v)=3$. Then $e\left(W_{1}, U\right) \geq 21-9=12$. If for some $u \in U, G[U-u+v]$ contains C_{5}^{+}, then u has at most one neighbor in W, because otherwise $G[W+u]$ contains either C_{5}^{+}or the T-graph. Since at most 3 edges connecting W_{1} with U are missing, it yields:
${ }^{(* *)}$ There is at most one $u \in U$ such that $G[U-u+v]$ contains C_{5}^{+}.
If the non-neighbors of v in U are not consecutive on the cycle $\left(u_{1}, \ldots, u_{5}\right)$ (in which case they are u_{i-1} and u_{i+1} for some $i \in\{1,2,3,4,5\}$), then both $G\left[U-u_{i-1}+v\right]$ and $G\left[U-u_{i+1}+v\right]$ contain C_{5}^{+}, a contradiction to ${ }^{\left({ }^{* *}\right) \text {. So we assume below }}$ that the neighbors of v in U are u_{i-1}, u_{i}, and u_{i+1}. Recall that $u_{2} u_{5} \in E(G)$. Up to a symmetry, there are three possibilities: $i=3, i=2$ and $i=1$. If $i=3$, then either of $G\left[U-u_{1}+v\right]$ and $G\left[U-u_{3}+v\right]$ contains C_{5}^{+}, a contradiction to (**), again. If $i=2$, then either of $G\left[U-u_{1}+v\right]$ and $G\left[U-u_{4}+v\right]$ contains C_{5}^{+}. Thus, the last possibility is that $i=1$. In this case, u_{1} has at most one neighbor in W and hence some $u \in\left\{u_{3}, u_{4}\right\}$ is adjacent to all vertices in W_{1}. Then $G[W+u]$ contains C_{5}^{+}, and $G[U-u+v]$ contains the microphone graph. This contradicts Lemma 6.

Subcase 1.5.4: $d_{U}(v)=2$. Then $e\left(W-w_{1}, U\right) \geq 21-6=15$. It follows that all edges connecting U with $W-w_{1}$ are present in G. We may assume that the neighbors of v in U are u_{i} and either u_{i+1} or u_{i+2}. Then either of $G\left[u_{i}, u_{i+1}, u_{i+2}, v, w_{3}\right]$ and $G\left[W-w_{3}+u_{i-1}+u_{i-2}\right]$ contains C_{5}^{+}.

CASE 2. $N(v) \cap W=\left\{w_{2}, w_{4}\right\}$. Then v and W form the T-graph, and we are done by Lemma 7 .
CASE 3. $N(v) \cap W=\left\{w_{4}\right\}$. For every $Y \subseteq V(G)$, let $D(Y)=3 d_{Y}(v)+d_{Y}\left(w_{1}\right)+d_{Y}\left(w_{2}\right)+d_{Y}\left(w_{3}\right)$. Since $D(V(G)) \geq 3 \sigma_{2}$, we have $D(V(G)-W-v) \geq 3 \sigma_{2}-(3+3+3+3) \geq(4 n-3)-12>4(n-5)$, and hence there exists a component of H_{0}^{\prime} mapped to a set $U \subset V(G)$ with $D(U)>4|U|$. Let $W_{4}=W-w_{4}$.

Proofs of the Cases 3.1 (when $|U|=1$), 3.2 (when $|U|=2$) and 3.4 (when $|U|=4$) are exact repetitions of proofs of the Cases 1.1, 1.2, and 1.4, respectively. Also, (14) holds if $|U| \geq 3$ for the same reasons as in Case 1.

Case 3.3: $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $G[U]=K_{3}$. By the choice of $U, D(U) \geq 13$. If some $w \in\left\{w_{1}, w_{3}\right\}$ has at least two neighbors in U, then $G[W-w]=K_{3}$ and, by (14), $G[U+v+w]$ contains either C_{5}^{+}or the T-graph. Otherwise, $e\left(W_{4}, U\right) \leq 5$ and to have $D(U) \geq 13$, we need $d_{U}(v)=3$. In this case, we still have $e\left(W_{4}, U\right) \geq 4$ and hence some $w \in\left\{w_{1}, w_{3}\right\}$ has a neighbor in U. Then $G[U+v+w]$ contains the microphone graph and again $G[W-w]=K_{3}$.

Case 3.5: $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $G[U]$ contains cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ and edge $u_{2} u_{5}$. By the choice of $U, D(U) \geq 21$. The proofs of the subcases when $d_{U}(v)$ equals 5,4 , and 2 word-by-word repeat the proofs of the subcases 1.5.1, 1.5.2, and 1.5.4, respectively. So, we need to handle only the case $d_{U}(v)=3$.

Since $D(U) \geq 21$, we have $e\left(W_{4}, U\right) \geq 12$. Then some $x \in\left\{w_{1}, w_{3}\right\}$ has at least four neighbors in U, and some $x^{\prime} \in W_{4}-x$ (also having at least four neighbors in U) has at least two common neighbors (say u and u^{\prime}) with v in U. Since $v w_{4} \in E(G)$, $G[W-x+v+u]$ (and $G\left[W-x+v+u^{\prime}\right]$) contains either C_{5}^{+}or the T-graph. Hence we are done if $G[U-u+x]$ or $G\left[U-u^{\prime}+x\right]$ contains C_{5}^{+}. If neither of $G[U-u+x]$ and $G\left[U-u^{\prime}+x\right]$ contains C_{5}^{+}, then $d_{U}(x)=4$ and $d_{U}\left(x^{\prime}\right)=4$. Furthermore, if u_{i} is the non-neighbor of x in U, then the common neighbors of v and x^{\prime} in U are only u_{i-1} and u_{i+1}. It follows that $N_{U}\left(w_{j}\right)=U-u_{i}$ for $j=1,2,3$ and $N_{U}(v)=\left\{u_{i-1}, u_{i}, u_{i+1}\right\}$. Then either of $G\left[u_{i-1}, u_{i}, u_{i+1}, v, w_{1}\right]$ and $G\left[W-w_{1}+u_{i-2}+u_{i+2}\right]$ contains C_{5}^{+}.

So, all cases are considered and the theorem is proved.

Acknowledgments

We thank the referees for helpful remarks. The first author's research was supported in part by the NSF grant DMS0650784 and the RFBR grant 05-01-00816. The second author's research was supported in part by the NSF grant DMS0652306.

References

[1] M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) 28 (1993) 39-51.
[2] N. Alon, E. Fischer, 2-factors in dense graphs, Discrete Math. 152 (1996) 13-23.
[3] B. Bollobás, S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Comb. Theory Ser. B 25 (1978) 105-124.
[4] B. Bollobás, A. Kostochka, K. Nakprasit, Packing d-degenerate graphs, J. Combin. Theory Ser. B (2007) doi:10.1016/j.jctb.2007.05.002.
[5] P.A. Catlin, Subgraphs of graphs. I, Discrete Math. 10 (1974) 225-233.
[6] P.A. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions, Ph. D. Thesis, Ohio State Univ., Columbus, 1976.
[7] K. Corrádi, A. Hajnal, On the maximum number of independent circuits in a graph, Acta Math. Acad. Sci. Hung. 14 (1963) 423-439.
[8] B. Csaba, A. Shokoufandeh, E. Szemerédi, Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three, Combinatorica 23 (2003) 35-72.
[9] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[10] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) 487-492.
[11] G. Fan, H.A. Kierstead, Hamiltonian square paths, J. Combin. Theory Ser. B 67 (1996) 167-182.
[12] A. Hajnal, E. Szemerédi, Proof of conjecture of Erdős, in: P. Erdós, A. Rényi, V.T. Sós (Eds.), Combinatorial Theory and its Applications, vol. II, NorthHolland, 1970, pp. 601-623.
[13] P. Justesen, On independent circuits in finite graphs and a conjecture of Erdós and Posa, Ann. Discrete Math. 41 (1989) 299-306.
[14] H. Kaul, A. Kostochka, Extremal graphs for a graph packing theorem of Sauer and Spencer, Combin. Probab. Comput. 16 (3) (2007) 409-416.
[15] A. Kostochka, G. Yu, Ore-type graph packing problems, Combin. Probab. Comput. 16 (2007) 167-169.
[16] A. Kostochka, G. Yu, An Ore-type analogue of the Sauer-Spencer Theorem, Graphs Combin. 23 (2007) 419-424.
[17] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[18] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302.
[19] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1999) 183-190.
[20] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

[^0]: * Corresponding author at: Department of Mathematics, University of Illinois, Urbana, IL 61801, USA.

 E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), gexin.yu@vanderbilt.edu (G. Yu).

